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Abstract

Metaprogramming allows users to write programs that write programs. In

dependently-typed languages such as Idris, recent work on elaborator reflection [17]

paved the way for new applications of metaprogramming by showing that a tactic-

based proof language can be substituted with a monadic interface that exposes the in-

ternal elaborator. The goal of our work is to use elaborator reflection to write editor

interaction actions in Idris.

Currently in Idris modes of editors such as Emacs, users can perform actions like

type-checking holes, case-splitting, and lemma extraction. Implementations of all of

these Idris editor actions are hard-coded in the compiler, and they are written in Haskell.

Our work will allow us to rewrite them in Idris as metaprograms and to move them into

an Idris library, instead of having them embedded into the compiler.

Furthermore, Idris users can write our own tactics through elaborator reflection and

run them from the editor, i.e. in edit-time. This would extend the abilities of the editor

interaction mode from the current built-in features to anything that can be done with

tactics. In our work, we present the design and implementation of this feature in the

Idris compiler.

We also implement an intuitionistic theorem prover tactic, which is meant to be an

better alternative to the built-in proof search editor action, and an add-clause tactic that

exemplifies how we can move some of the hard-coded features from the compiler to a

library.
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“What do compilers do? They
manipulate programs! Making it
easy for users to manipulate their
own programs, and also easy to
interlace their manipulations with
the compilers manipulations, creates
a powerful new tool.”

Tim Sheard and Simon Peyton Jones [53]
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CHAPTER 1

Introduction

The rising popularity of statically typed functional languages led to the program-

ming methodology of “type-driven development” (hereinafter referred to as TDD),

which is a style of development that revolves around the types of missing parts in pro-

grams. The expressions users have not written yet, or ones they do not know how

to write, can be left as holes in their program, and the program still compiles, with a

warning that there are incomplete parts. A hole is kind of expression, and since these

languages are statically typed, those holes have types. The parts programmers have

already written dictate what the types of the remaining parts should be. These types

can guide them when they try to fill the holes to complete the program. In other words,

TDD allows writing programs incrementally and top-down. This not only lets them

type-check programs at every step, but it also gives them clever hints about the follow-

ing steps, based on the types and the local contexts.1 This idea was originally born in

the world of proof assistants, and then it was borrowed by more practical functional

languages. Interactive editing based on this idea has been used in proof assistants for

a long time; the Edinburgh LCF system [30], HOL and Isabelle [45] have allowed users

to prove theorems incrementally.2 Users type in commands called “tactics” that update

the proof state by changing the goal, or by creating subgoals. Unlike the ones above,

there are tactic-based proof assistants like Coq [13] and Lean [22] that generate a Curry-

Howard style proof term at the end; these proof assistants have focused on changing

the proof term indirectly. Inspired by these systems, others arose which provide a new

1 Especially as dependent types gradually sneak into mainstream languages, like they already have to
Haskell [26] and Scala [3], we predict that TDD will only get more popular.

2 Propositions and types are distinct in these systems.
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1. INTRODUCTION 2

interface and type theory that focuses on changing the proof terms directly by incre-

mentally building them up. One of the earliest such proof assistants was the ALF proof

editor [37], and the idea was developed further in Epigram [40] and Agda [46]. The

ideas that are brewed in these proof assistants continue to inspire more mainstream

functional languages.

The traditional programming workflow either depended on saving a file and trying

to compile (or run) with every edit, or in the Lisp tradition it depended on the read-eval-

print loop (REPL). This has changed with the advancement of integrated development

environments (IDEs), programs that have certain functionalities such as code comple-

tion, syntax checking, displaying compiler error messages on their corresponding lines,

searching in documentation, etc. Through these features, IDEs enable rapid feedback

and interaction cycles between the user and checking tools of the language and com-

putation environment, but they are different from TDD. While IDEs can also use types

to assist the user, they do not direct the entire development process around types per

se. TDD is not a program; it is merely a style of programming in which the develop-

ment process takes the form of a conversation between the type-checker/compiler and

the user’s editor/IDE. However, this requires certain changes to the compiler, such as

being able to type-check incomplete expressions and definitions [12].

The kind of change that is important for this work is the editor interaction mode

(or the IDE mode, as it is called in Idris [11]) that lets the editor talk to the compiler.3

There are various existing examples of compilers and editors that do this sort of interac-

tion: Proof General [5] and CoqIDE for Coq, the Emacs mode [21] for Agda, the Emacs

mode [42] for Idris, jEdit [58] for Isabelle, and the editor mode of Lean.4 Idris has a

special place among these proving languages since it tries to prioritize general purpose
3 To avoid any confusion, we should mention that there are two different parts of an editor interaction
mode. The first is a plugin to the editor, often written in the script language of the editor, such as Emacs
Lisp or VimL. The second part is a separate program that does the heavy lifting of the editing features
that work with the language itself. ghc-mod in Haskell and agda-mode in Agda would be perfect examples
for the second part. We can call these parts the frontend and backend of the editor interaction mode,
respectively. When we talk about the language the editor interaction mode is implemented, we mean the
language used in the backend, because the language used in the frontend depends on the editor.

4 Haskell’s typed holes in GHC are exciting, their editor interaction features are not as polished as the ones
Agda and Idris have, since GHC/Haskell does not come with a built-in editor interaction system.
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programming. Compared to mainstream languages that have mature IDEs, Idris still

has an unusual standing since it also is a proof assistant [2]. This unique position of Idris

provides motivation for editor features on par with mature IDEs for other languages,

as well as the TDD-style development workflow via editor actions. Therefore, our work

strives to bring the long-standing traditions of proof assistants and IDEs closer together,

by introducing the “edit-time tactics” feature. The word “edit-time” is a wordplay on

the terms “compile time” and “run time”, and it means that we run the tactics when we

are still writing our program in the editor. The area of bringing IDE features to proof

assistants is not new [9, 36, 44, 55], but it has been focusing on their usefulness as proof

tools, not necessarily how they can help mainstream programmers. In contrast, we take

tactics from proof assistants and see how they can help type-driven developers.

Before we proceed to describe our work, it is imperative to understand what exactly

an editor action is. Editor actions are commands in the editor that make a meaningful

change in our code, or ones that give us some information about our code. For example,

if we are trying to define a function to compute the height of a binary tree, we can just

start by writing the type for the function.

Note that initially we only declared the type of the function, and nothing else. To get

an initial incomplete definition, we can run the editor action “Add initial match clause

to type declaration,” while the cursor is on the type declaration.

Now we have a definition for height that takes one argument x, and returns

?height_rhs. This is clearly incomplete; we want to change the return value based on
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what x is. So the next step would be to inspect what values x can take. We can place the

cursor on x and then run the editor action “Case split pattern variable.”

Now we have two holes that we have to complete, namely ?height_rhs_1 and

?height_rhs_2. When the cursor is on one of the holes, we can run the editor action

“Display type” and see what type of expression should replace the hole, and what

names are in the local context, i.e. are available to use when writing that expression.

We complete the function by filling the holes by writing the expressions.
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This example should show how much editor actions can shape our programming

experience.

1.1. Motivation

Now that we are familiar with what an editor action is, we can describe the problem

our project solves. The editor actions we reviewed above are features embedded in the

compiler. If you want to define a new action, the only way possible is to change the

compiler source code, build your own version of the compiler, and then edit the source

code of your editor mode to use that feature you added. This is far from ideal: no

one should have to fork a compiler just to add a custom editor action. Maintaining a

compiler fork and navigating through the compiler source code are usually not in the

skill sets of most users. Another drawback is that users would have to learn Haskell

and recompile the entire Idris system every time they want to define a custom editor

action.

Therefore, we want to give users a way to write custom editor actions. Our solution

for this is to make use of elaborator reflection [17, 25] in Idris, which is a metaprogram-

ming machinery that allows users to automate the construction of proofs and programs,

by reflecting the elaborator monad [11] in the Idris compiler. Christiansen and Brady

showed that this mechanism is powerful enough to replace the old tactic language [17]

that existed in the previous versions of Idris, which is now deprecated in favor of elab-

orator reflection.

Elaborator reflection adds a primitive monad Elab to Idris itself, in which type-

checking and normalizing terms, looking up types and definitions of functions are
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monadic actions.5 Our thesis argues that these actions provide a nice interface with

which users can define their custom editor actions. This has the following advantages:

• Implementations of the Idris editor actions mentioned above are built in to the

compiler, and they are written in Haskell. Our work will allow us to rewrite

them in Idris as Elab actions. This way, we can remove these parts from the

compiler and move them into an Idris library.

• The abilities of the editor interaction mode are extended from the current built-

in features to anything that can be done with tactics. This allows library and

DSL authors to provide domain-specific editor actions.

• Defining editor actions with a monadic interface allows us to compose them

easily. For instance, if we had case-splitting as an Elab action, we could define

a tactic to case-split on many arguments at the same time.

• More people can extend Idris; contributing to the Idris standard library or pub-

lishing a library of editor actions is much easier than extending the compiler

itself.

To see what an edit-time tactic would look like, let’s see an actual example in Emacs.

5 These monadic actions are still called tactics, especially if they change the goal queue or the local context,
hence the title of this thesis. Note that whenever we use the word “tactic” in the context of Idris, we
exclusively refer to the monadic Elab actions, not the old tactic language.



1. INTRODUCTION 7

In this example, we have defined an editor action prover using the tactic we explain

in section 5.2, set up an Emacs shortcut for it, and then run it on a hole that we want to

fill, using the tactic. We get the following result:

1.2. Contributions

We make the following specific contributions in this thesis:

• We extend the primitive Elab monad with the necessary primitive monadic

actions that make writing an editor action with elaborator reflection possible

(section 4.1).

• We define an Idris interface (or type class in Haskell terminology) called

Editorable for serializing and deserializing Idris expressions. For the reflected

type that represents the core language terms of Idris, implementations of this

interface are primitives (section 3.2).

• We extend the Idris compiler to track the association between source code and

typing contexts (section 4.4).

• The current proof search mechanism in Idris is not particularly advanced. We

write an alternative proof search tactic called Hezarfen, a full-blown theorem

prover for intuitionistic propositional logic, based on Dyckhoff’s LJT [24], and

then we show how to use this on holes when we are in the editor (section 5.2).
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• We define an add clause tactic that can be run from the editor, which can re-

place the hard-coded add clause editor action (section 5.1).

Some of the features we implemented in this thesis have already made their way

to the Idris compiler, and the rest also will once they are reviewed by the other Idris

contributors.

We envision three different audiences for this thesis:

(1) Idris programmers who use editor actions in their editor, who will now have access

to more editor actions. For them, reading the applications of edit-time tactics in

chapter 5 would be the most helpful.

(2) Advanced Idris programmers who want to write simple editor actions, using the

common Idris types and reflected types. More advanced Idris programmers may

want to write more complex editor actions that involve data types that they define.

They may want to read chapter 3 in order to understand the design of our feature

and what should be taken into account when defining such data types.

(3) Compiler developers and contributors for Idris and other dependently-typed lan-

guages. They may want to read chapter 4 in order to observe what we needed to

change in the compiler, and how they can add this feature to a different language.

Now that we have gotten a taste of edit-time tactics and we know what to look for

while reading this thesis, we review the basics of the Idris programming language and

its metaprogramming machinery in chapter 2. We discuss the design of the edit-time

tactics feature in chapter 3 and their implementation in chapter 4.

Before we move on the other chapters, it might be helpful to take a brief look at

the typographic conventions we use in this thesis: when we have code excerpts, we will

use a monospace font. Keywords will be written in black boldface, types will be blue6,

constant and function names will be green, data type constructors and primitives will

be red, bound variables will be purple, holes will be cyan, and comments will be dark

gray.7 We will have code excerpts in different programming languages such as Idris,

6 Links to URLs and different parts of the thesis are also in blue, but not in monospace font.
7 We are following the color conventions in Conor McBride’s Epigram paper [40].
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Haskell, and Emacs Lisp in this thesis. For that reason we will always explicitly state

what language the code is in, but we will use the same highlighting for all of them.



CHAPTER 2

Background

2.1. Idris

Idris is a dependently typed functional programming language. In simple terms,

dependent types allow us to do computation in types, just like we can do computation

in terms [19]. Moreover, we can use the computation in types to shape our definitions

of computations in terms.

A helpful intuition for functional programmers is to think about how the concept

that functions are values was initially a novel idea, and now in dependently typed pro-

gramming, we promote types to values as well. Thus a function can now take a term as

an argument and return a type as a result [7, 33]. For those familiar with Haskell type

families [52], this is similar to that, but notice that type families are like functions from

types to types, while dependent types allow us to have functions from terms to types.

In Figure 2.1, we define a data type of vectors. It is exactly like lists, except now

the length is stored within the type. In other words, as we add elements, the length is

computed at the type level.

After that, we define a function that zips two vectors. Notice that only two cases are

enough to cover all possible paths of this function. If we were to define a zip function

for lists, we would need four cases: both empty, both non-empty, one empty and one

non-empty, and one non-empty and one empty. However, our zip function takes two

arguments that are of the same length n.1 Therefore, we cannot have a case with one

empty and one non-empty, because that contradicts the fact that both vectors are of the

same length. Notice that the zip function returns a vector of length n. In other words,

the input vectors and the resulting vector are guaranteed to be of the same length.

1 Both the Nat named n and the Type named a here are implicit quantifiers.

10
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Figure 2.1. Example of a dependently typed Idris code: vectors

Idris
data Vect : Nat -> Type -> Type where

Nil : Vect 0 elem
(::) : elem -> Vect len elem -> Vect (S len) elem

zip : Vect n a -> Vect n b -> Vect n (Pair a b)
zip [] [] = []
zip (x :: xs) (y :: ys) = (x, y) :: zip xs ys

In Figure 2.2, we define two similar data types that ensure that the given natural

number is even or odd, and compute the number within the type at every step. Later,

we give a function that takes a natural number and generates either a value of the type

that ensures evenness or one that ensures oddness. This corresponds to a proof that for

all n ∈ N, n is even or n is odd.

Figure 2.2. Example of a dependently typed Idris code, parity of natural numbers

Idris
data Even : Nat -> Type where

EvenZ : Even 0
EvenSS : Even n -> Even (S (S n))

data Odd : Nat -> Type where
Odd1 : Odd 1
OddSS : Odd n -> Odd (S (S n))

total
evenOrOdd : (n : Nat) -> Either (Even n) (Odd n)
evenOrOdd 0 = Left EvenZ
evenOrOdd 1 = Right Odd1
evenOrOdd (S (S n)) = case evenOrOdd n of

Left ev => Left (EvenSS ev)
Right o => Right (OddSS o)

Unlike other dependently typed languages like Agda and Coq, Idris is not total

by default. This is because Idris prioritizes general purpose programming rather than

theorem proving. However, users can opt in to totality checking either for the entire
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module or for specific declarations.2 We did the latter for evenOrOdd by using the key-

word total. Similarly, we could require the zip function from the previous example to

be total if we wanted to.3

Haskell’s type classes and type class instances are called interfaces and implementa-

tions in Idris, respectively. In Haskell there can only be one instance for the same type

class and type, but in Idris there can be multiple implementations for the same interface

and type. You can name implementations and specify the implementation you want to

use by its name when you are writing a function. For our purposes, we will not use

multiple implementations.

2.2. Elaborator reflection

Idris programs are elaborated from high-level Idris syntax trees into a core language

called TT, and then type checked [11]. The implementation of the Idris elaboration in

the compiler is written as a Haskell monad called Elab. Recent work on elaborator re-

flection [17] allowed Idris users to access this monad from Idris itself, by implementing

a primitive monad Elab in Idris itself, that can only be used for metaprogramming in

compile time.

2.2.1. Reflected core language types. Since the Elab monad in Idris needs to work

with core language terms and definitions, we have to use data types in Idris that rep-

resent them. We want to have a correspondence between the internal data type that

represents the core language syntax in the compiler and the ones defined in Idris.

In this thesis, we will use the term reflection to refer to “the capability of converting

some piece of concrete code into an abstract syntax tree object that can be manipulated

in the same system” [56].4 In other words, we will define Idris types that let us work

with Idris syntax trees within Idris. We will call these types “reflected types” for now.

We give a diagram in Figure 4.2 to explain the relationship between the metalanguage
2 Both for functions and data type definitions, since the latter are checked for strict positivity.
3 Clearly Idris cannot decide whether an arbitrary function is total, since that would solve the halting
problem. Instead it acknowledges the ones that are obviously total, and for all the other ones, even if
they are actually total, it throws a totality check error.

4 Note that this is somewhat at odds with the usage of the term “reflection” in normalization by evaluation.



2. BACKGROUND 13

Haskell, the object language Idris, the core language of Idris and the conversions from

one to another. The diagram provides an overall look, which is not required to un-

derstand this section, but finishing this section is necessary to fully comprehend the

diagram. Nevertheless, looking at the diagram before reading this section might be

helpful to some readers.

The most important reflected type is called TT, which represents the core language’s

typed terms, and its definition can be seen in Figure 2.3.

Figure 2.3. The reflected type TT in Idris.

Idris
data TT : Type where

P : NameType -> TTName -> TT -> TT
V : Int -> TT
Bind : TTName -> Binder TT -> TT -> TT
App : TT -> TT -> TT
TConst : Const -> TT
Erased : TT
TType : TTUExp -> TT
UType : Universe -> TT

As a quick summary:

• P creates a variable term from a name, as defined in Figure 2.5, and the type of

the variable.

• V creates a de Bruijn variable. (given integer n representing the nth most re-

cently introduced local variable)

• Bind creates any kind of binder (lambda, let etc.) with a term it binds on.

• App creates a function application.

• TConst creates a constant such as an integer, a character, a string etc.

• Erased creates a term that is not known. This is used for erasing the types we

do not need later in the compilation.

• TType creates a type of types for a given universe.

• UType creates a uniqueness type for a given uniqueness universe.
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This summary is meant to be an overview, so refer to Brady [11] and Christiansen

and Brady [17] if this is not perfectly clear. For our purposes, we will mostly be con-

cerned with P, Bind and App.

The other important type that is used in elaborator reflection is Raw, which is the

type of untyped core language terms, and its definition can be seen in Figure 2.4.

Figure 2.4. The reflected type Raw in Idris.

Idris
data Raw : Type where

Var : TTName -> Raw
RBind : TTName -> Binder Raw -> Raw -> Raw
RApp : Raw -> Raw -> Raw
RType : Raw
RUType : Universe -> Raw
RConstant : Const -> Raw

The constructors of Raw are almost the same ones as TT, except a few of them are

missing and variables do not have to be annotated with their types. This makes Raw

terms easier to type by hand, if necessary. Therefore TT terms will usually be treated as

the output from the type checker, and Raw terms will be the input to the type checker.

The TTName type is the type of names in the core language, its full definition can be

seen in Figure 2.5.

Figure 2.5. The reflected type TTName in Idris.

Idris
data TTName : Type where

UN : String -> TTName
NS : TTName -> List String -> TTName
MN : Int -> String -> TTName
SN : SpecialName -> TTName

As a quick summary:

• UN represents user-provided variable names without any namespace.
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• NS represents variable names with a given namespace. For example, the name

Prelude.Bool.True is represented as NS (UN "True") ["Bool", "Prelude"].

• MN represents machine generated names with a hint string and a fresh integer

for that hint.

• SN represents special names, which are used for metavariables, implementa-

tions etc. We will not deal with them in this thesis.

As a quick way to refer to Idris names, there is a syntactic sugar ˋ{{x}} that would

give you the term UN "x". Similarly, there is another syntactic sugar that checks whether

a given name exists and lets you refer to an existing name without having to specify its

full namespace: ˋ{False} would give you NS (UN "False") ["Bool", "Prelude"].

There are many other types used in the reflection of the core language, but we will

not give their definitions here since they are not as common as TT, Raw, and TTName.

However, it is useful to at least list the most important ones and describe what they

represent.

• TyDecl represents type declarations.

• DataDefn represents data type definitions.

• FunDefn represents function definitions.

• FunClause represents a single clause in a function definition.

2.2.2. Quotations. Writing TT and Raw terms by hand can get tedious, hence there

is a quotation syntax that elaborates a given expression into its corresponding TT or Raw

term [18]. The syntax ˋ(e), where e is an Idris expression, gives us the typed or untyped

core language syntax tree for e. For example, ˋ(not True) gives us the following TT

term:
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Figure 2.6. The TT term we get when we quote not True.

Idris
App (P Ref

(NS (UN "not") ["Bool", "Prelude"])
(Bind (UN "__pi_arg")

(Pi (P (TCon 8 0) (NS (UN "Bool") ["Bool", "Prelude"]) Erased)
(TType (UVar "./Prelude/Bool.idr" 71)))

(P (TCon 8 0) (NS (UN "Bool") ["Bool", "Prelude"]) Erased)))
(P (DCon 1 0)

(NS (UN "True") ["Bool", "Prelude"])
(P (TCon 0 0) (NS (UN "Bool") ["Bool", "Prelude"]) Erased))

The Raw term for the same expression is a bit smaller:

Figure 2.7. The Raw term we get when we quote not True.

Idris
(RApp (Var (NS (UN "not") ["Bool", "Prelude"]))

(Var (NS (UN "True") ["Bool", "Prelude"])))

Obviously, we would not want to write terms like these manually every time we

want to return the syntax tree for a simple function application. At times like this, quo-

tation saves us, for both expressions and patterns.

We can also give the type of the expression we want to elaborate, which becomes

necessary when Idris cannot infer the type. For True, it is trivial to infer that type is Bool,

but for 5, the type can be Int, Integer, Nat, or anything that satisfies the Num interface.

Therefore, we have to specify the type when we are quoting. The syntax for that is

ˋ(e : t), e.g. ˋ(5 : Nat).

We also can do antiquotation. If we have some variable expression x that has the

type TT or Raw, then we can construct a syntax tree using it within the quotation, with

the syntax ˋ(not ~x). Note that antiquotation works for expressions, not just variables.

The type of expression or variable we have in the antiquotation has to match the type

of the quotation. In other words, only TT expressions can be used in an antiquotation

in a TT quotation, and mutatis mutandis for Raw.
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For further information on Idris’ quotations, see Christiansen [18].

2.2.3. Elabmonad. The elaborator reflection [17] feature that has been added to the

Idris compiler recently provides a tool for metaprogramming with a monad called Elab.

This monad is implemented as a primitive and it can only be run during compile time,

or in the interactive proof shell.

Elaborator reflection adds a new declaration %runElab e to Idris, where e has the

type Elab (). This declaration runs the Elab action and adds new type declarations,

function and data type definitions generated by the Elab action generated by e to the

context.

Elaborator reflection also adds a new expression %runElab e to Idris, where e has

the type Elab (). The type t of the entire expression is started as the goal of the Elab

action, and the tactics in e must solve the goal that has the type t. Like the declaration

above, this expression also adds the newly generated declarations and definitions to the

context.

The Elab monad holds a proof state inside, which has a goal type, a proof term that

is incrementally built up, a hole queue, a collection of open unification problems, and a

supply of fresh names [17]. This state is really held in the Haskell Elab monad, though

it can be observed from Idris.

Tactics can change the proof state. Here are some examples that do that:

• claim : TTName -> Raw -> Elab ()

Creates a new hole with a given name and a type.

• fill : Raw -> Elab ()

Create a guess to fill the current hole with a term. Fail if the types do not

unify [39].

• solve : Elab ()

Try to finalize the guess in the hole. Fail if there is no guess [39].

There are a lot more tactics, which we will not list here. A more thorough list can be

found in Christiansen and Brady [17] and Idris documentation.
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We also have access to Elab actions that do not change the proof state, but give us

access to the context or other compiler primitives:

• check : List (TTName, Binder TT) -> Raw -> Elab (TT, TT)

Type-checks a term under a given environment and gives the typed core term

version of the Raw term and the type of it as a typed core term.

• normalise : List (TTName, Binder TT) -> TT -> Elab TT

Normalizes5 a typed term under a given environment.

• lookupTy : TTName -> Elab (List (TTName, NameType, TT))

Looks up the type of the given name and returns the ones it finds in a list, in

case the name is ambiguous.

Observe that in some of these functions, for inputs we use Raw, the untyped core

language terms, and results are in TT, the typed core language terms. This is because

untyped core language terms are easier to write for the tactic users, and type-checking

them in the elaborator is easy.

Now let’s define a function using elaborator reflection. Take the polymorphic iden-

tity function, for example.

Figure 2.8. The identity function using elaborator reflection in Idris.

Idris
id : (a : Type) -> a -> a
id = %runElab (do intro `{{ty}}

intro `{{a}}
fill (Var `{{a}})
solve)

For anyone familiar with Coq, this will look very similar to a normal Coq proof.

First we take the type as an argument, and then a value of that type, and we return the

same value. Elaborator reflection proofs look a bit more unpolished compared to Coq

5 normalise is spelled the British way, since most Idris development happens in the UK.
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proofs6, but it is essentially very similar to Coq tactics, hence the name “tactics” we use

to refer to monadic Elab actions.

Let’s prove a lemma in Idris. This time we want to prove that (∀n ∈ N) n = n+ 0,

for the standard definition of addition. Since that requires more complex tactics like

induction, we will import the Pruviloj7 library [19].

Figure 2.9. A proof that (∀n ∈ N) n = n+ 0 using elaborator reflection in Idris.

Idris
nPlusZero : (n : Nat) -> n = plus n 0
nPlusZero = %runElab (do intro `{{n}}

induction (Var `{{n}})
compute
reflexivity
compute
attack
intro `{{n1}}
intro `{{indHyp}}
rewriteWith (Var `{{indHyp}})
reflexivity
solve)

The proof proceeds as follows: we first take in the argument n, and then do an

induction on n. Because of the way induction works in Pruviloj, we have to simplify the

goal using compute8. For the base case, the goal is just proving 0 = 0. For the inductive

step, we have to restructure the goal with attack and then reintroduce the input and

then introduce the induction hypothesis. Then we rewrite the goal with the induction

hypothesis and then the goal becomes trivial. Understanding this proof completely is

not crucial for this thesis, but if you want to fully comprehend attack and solve, you

can refer to Christiansen and Brady [17].
6 This is because Coq has the Gallina language for proof terms and Ltac [23] for tactics, therefore, while
Idris does not have such a distinction; it only has one language: Idris itself. Therefore the syntaxes for
core language terms, quotation and special names look more cluttered. Another reason that elaborator
reflection looks more unpolished is that Coq tactics are designed to just inhabit a type, while Elab is
designed for programs where we want to control the precise computational behavior.

7 Pruviloj is the Idris library included in the Idris distribution. It contains complex tactics written with
elaborator reflection.

8 Its Coq equivalent would be simpl.
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Finally let’s do an example for a declaration with elaborator reflection:

Figure 2.10. A type declaration and new definition for n, using elaborator re-
flection in Idris.

Idris
%runElab (do declareType (Declare ˋ{{n}} [] `(Nat))

defineFunction (DefineFun ˋ{{n}}
[MkFunClause (Var ˋ{{n}}) ˋ(Z)]))

The example above first declares that n will have the type Nat. Then it defines it as

n = Z.

Now that we have seen different use cases for elaborator reflection, we can move on

to the design of the edit-time tactics feature.



CHAPTER 3

Design

The goal of this project is to allow users to write custom editor actions using elab-

orator reflection. The editor and the compiler have to communicate to do that; the edi-

tor must send the name of the action and the necessary information, and the compiler

should then send the result back. In this chapter, we will look at how the built-in editor

actions work, and then see what kind of restrictions this brings, and how this shapes

the design of edit-time tactics.

3.1. Communication

The current Idris implementation1 of the editor interaction mode is a part of the

Idris compiler, and is written in Haskell. The editor runs an instance of the idris ex-

ecutable with the --ide-mode flag, which allows socket communication with the pro-

gram through a machine-readable syntax.2 To be more precise, the compiler receives

S-expressions [41] as input over the socket and sends back S-expressions as output.

Let’s revisit the editor actions we looked at in chapter 1. We have the following

piece of code, which we will complete to the height function on binary trees. The next

step is to add the initial function clause.

Figure 3.1. Initial height function.

Idris
height : Tree a -> Nat

1 This thesis is using Idris 1.2.0.
2 The Idris mode of Vim works differently, since Vim did not support asynchronous jobs until version 8.0.
This should change in the near future.

21
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When we place the cursor on height and run the action to add the initial function

clause, the editor sends the message on the first line in Figure 3.2 to the compiler, af-

ter doing the necessary computation, the compiler responds with the message on the

second line.

Figure 3.2. The communication for add clause editor action on height.

S-expression
-> ((:add-clause 4 "height") 8)
<- (:return (:ok "height t1 = ?height_rhs") 8)

Let’s look at how these messages are formed. The built-in add clause command

needs to know the line number after which we are adding a clause, which is 4, and the

name of the function we are adding a clause for, which is height. Also, for communi-

cation purposes, we require that messages have unique IDs, which is what the number

8 we have at the end of the message is. Observe that the response also carries the same

number.

The response contains :ok, which means the clause adding succeeded, and then a

string that contains a line of code. When the editor receives that, it adds this new code

to the next line. Note that that last step is done by the front-end of the editor interaction

mode, i.e. in Emacs Lisp if we are in Emacs.

The next step in writing the function height is to look at the possible cases of the

tree, i.e. a case-splitting action. This is the piece of code we have before that action:

Figure 3.3. height function after adding an initial clause

Idris
height : Tree a -> Nat
height t1 = ?height_rhs

When we place the cursor on t1 and run the case-splitting action, the communication

in Figure 3.4 happens between the editor and the compiler.
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Figure 3.4. The communication for case-split editor action on height.

S-expression
-> ((:case-split 5 "t1") 11)
<- (:return (:ok

"height Empty = ?height_rhs_1\n
height (Node x t1 t2) = ?height_rhs_2\n") 11)

The built-in case-split command needs to know the line number on which we are

case-splitting, which is 5, and the name of the pattern variable we are splitting, which

is t1. The response contains :ok, which means the case-splitting succeeded, and then a

string that contains two lines split by the new line character. When the editor receives

this information, it replaces the line the cursor was on before with the new code it

received.

We have now seen how exactly the current editor action communication between

the editor and the compiler works through S-expressions. Now we want to introduce

an S-expression format that can capture any of these commands: we want to generalize

the ones we have seen so far.

Suppose we have the following Elab action that we want to run from the editor:

prover : TTName -> Elab TT. We will see in detail in section 5.2 how this tactic is im-

plemented. For now let’s only look at how it is used. It takes a name of a hole, and

returns the proof term to fill the hole with. Let’s try to prove a trivial lemma with this

tactic.

Figure 3.5. Type declaration for a simple theorem f, with an incomplete definition.

Idris
f : Either Unit Void
f = ?q

When we place the cursor on ?q and tell the editor to run the prover tactic, we have

to convey a couple things to the compiler: We have to tell that we want to run an Elab

action named prover, and we are running this on the hole ?q, and where exactly the
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cursor is (in line and column numbers) when we run this editor action. Here is the

communication we want to have for this:

Figure 3.6. The communication for the custom prover action on the hole ?q.

S-expression
-> ((:elab-edit "prover" '("q") 21 5) 22)
<- (:return (:ok "Left ()") 22)

The editor tells the compiler that we want to run an Elab action named prover. But

the actions we may want to run take arguments, therefore we pass a list S-expression

’("q") that corresponds to the arguments prover takes. The editor also tells the com-

piler where the cursor was when the user called the editor action, in this case 21 is the

line number and 5 is the column number. Remember from the previous communica-

tions that the last number, which is 22 here is the communication ID.

In the response we get from the compiler, we get a piece of code that is supposed

to replace the hole. In the next section, we will discuss what determines the kind of

S-expression we should send and receive for a given type.

3.2. Types of editor actions

Users of our work will write Elab actions that will then be called from the editor via

S-expressions that are sent to the compiler. We outlined above that in the S-expression,

we need to pass the arguments of the specific Elab action we want to call. Since we

have to be able to send the arguments in an S-expression and also send the result back

in another S-expression, we have limits on what kind of arguments an S-expression

can take. In other words, all arguments and the result of an Elab editor action have to

serializable and deserializable.

Since communication is done via S-expressions, we need to reflect the type of

S-expressions to Idris.
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Figure 3.7. The reflected type SExp in Idris.

Idris
data SExp : Type where

SExpList : List SExp -> SExp
StringAtom : String -> SExp
BoolAtom : Bool -> SExp
IntegerAtom : Integer -> SExp
SymbolAtom : String -> SExp

An S-expression is either an atom of string, boolean, integer, or symbol (such as

:example-symbol), or a list of S-expressions. For example, the S-expression ’("q") will

be represented in Idris as SExpList [StringAtom "q"].

Going back to the serialization problem, for the argument and return types or our

Elab editor actions, we should specify how they should be converted to SExps. Defining

certain functions for a given type sounds like the perfect task for Idris interfaces.

Therefore, we define the interface Editorable in Idris, which tells us how to serialize

a given type into an SExp and how to deserialize it. In subsection 3.2.3, we will describe

how implementations for the Editorable interface will be used by the compiler during

the communication between the editor and the compiler.

Figure 3.8. Definition of the Editorable interface.

Idris
interface Editorable a where

fromEditor : SExp -> Elab a
toEditor : a -> Elab SExp

We have two functions fromEditor and toEditor that must be defined for a type that

we want to make serializable. fromEditor allows us to deserialize a given S-expression

into a value of the type a. toEditor allows us to serialize a value of the type a into an S-

expression. Notice that both of these functions return a value in the Elab monad. There

are a few reasons for this:
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(1) The Elab monad captures failure. The fromEditor function, which parses S-

expressions, should fail if we are given an S-expression that is ill-formed for

the type a.

(2) The Elab monad has an implementation for the Alternative interface, which

allows us to recover from failure if we need to.

(3) When an Elab action fails with an explicit use of

fail : List ErrorReporPart -> Elab a, the user can give a detailed ac-

count of why it failed through the pretty printed errors. This is useful for

giving graceful error messages to the user when a custom editor action fails.

(4) Users may want to limit both serialization and deserialization to some of the

constructors of a type. Being able to fail for certain constructors gives the users

flexibility.

(5) The reason that we specifically need Elab instead of any other monad that can

fail, is that users may want to type check or normalize terms, or look up infor-

mation about existing types and functions during serialization and deserializa-

tion. This is only available in the Elab monad.

3.2.1. Editorable implementations in Idris. Now that we have justified why

putting fromEditor and toEditor in the Elab monad is necessary, let’s see how we can

define an Editorable implementation for String.

Figure 3.9. Editorable implementation for the type String.

Idris
implementation Editorable String where

fromEditor (StringAtom s) = pure s
fromEditor x =
fail [ TextPart "Can't parse the"

, NamePart ˋ{SExp}
, TextPart (show x ++ "as a")
, NamePart ˋ{{String}} ]

toEditor = pure . StringAtom
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The definition of fromEditor above tells us that if an S-expression is a string atom,

then we know how to get a String from it, otherwise we fail. On the other hand,

toEditor never fails; if we have a String we can always construct a StringAtom and

put it in the Elab monad.3

Now, for a more complex example, let’s look at Figure 3.10 to see we can make Lists

Editorable.

Figure 3.10. Editorable implementation for the List type.

Idris
implementation Editorable a => Editorable (List a) where

fromEditor (SExpList xs) = traverse fromEditor xs
fromEditor x =
fail [ TextPart "Can't parse the"

, NamePart ˋ{SExp}
, TextPart (show x ++ "as a")
, NamePart ˋ{List} ]

toEditor xs = SExpList <$> traverse toEditor xs

The definition of fromEditor for lists tells us that if we have a list S-expression,

which holds an Idris list xs of S-expressions inside, we can apply fromEditor to each of

the S-expressions in xs and deserialize them all, and if they all succeed we can make a

list from their results and return that. Similarly, the definition of toEditor for lists tells

us that if we have an actual list xs, we can traverse the list to serialize them all, and if

they all succeed, we can make an S-expression out of the serialized elements.

Now, let’s look at Figure 3.11 to see how we can serialize and deserialize one of the

types that we expect to use the most in our editor actions, the type of names, TTName.

3 Remember that Editorable is a Monad, which means it also has an Applicative implementation, therefore
we can use pure instead of return, and this is the preferred way in Idris.
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Figure 3.11. Editorable implementation for the type TTName.

Idris
implementation Editorable TTName where

fromEditor (StringAtom s) = namify s
where
namify : String -> Elab TTName
namify s =

case reverse (map pack (splitOn '.' (unpack s))) of
[] => fail [TextPart "Empty string can't be a TTName"]
[x] => pure (UN x)
(x :: xs) => pure (NS (UN x) xs)

fromEditor x =
fail [ TextPart "Can't parse the"

, NamePart ˋ{SExp}
, TextPart (show x ++ "as a")
, NamePart ˋ{TTName} ]

toEditor n = StringAtom <$> stringify n
where
stringify : TTName -> Elab String
stringify (UN x) = pure x
stringify (NS x []) = stringify x
stringify (NS x xs) =

pure (concat (intersperse "." (reverse ("" :: xs)))
++ !(stringify x))

stringify (MN i x) = pure ("__" ++ x ++ show i)
stringify n'@(SN sn) =

fail [ TextPart "Don't know how to make"
, NamePart n', TextPart "into StringAtom"]

This is a long code excerpt, and you do not have to follow the code entirely. We

will summarize the code below, but this excerpt should demonstrate that we can define

one of the most pivotal parts of serialization in Idris itself, without writing any Haskell

code.

Here is an overview of what the code in Figure 3.11 does: when we want to deseri-

alize a name, we require it to be a StringAtom, and then we split the string s on the dots

it contains. If there is no dot inside, we make it a TTName without a namespace using UN,

if there are dots inside, we make it a TTName with a namespace using NS. Similarly, if we
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have a TTName, we check if we are given a namespace by looking at the constructors of

TTName. If we are, then we make a String the name with dots in between, if we are not,

then we merely make String from what we have. For the machine generated names,

for now, we make up a representation, that we hope will not clash will other names. We

fail for the special names. Editor actions will ideally not use names with MN and SN, so

this is a temporary fallback solution4.

Before we move on to the primitive Editorable implementations, we should point

out that we have not made any function type Editorable. One can easily come up with a

way to serialize pure and total functions with finite domains by listing the results of the

function for each of the inputs. Alternatively, since editor actions are run interactively,

we do have access to the source code of functions, so one could explore serialization of

functions more seriously, but we will not entertain this thought in this thesis. Remem-

ber that there are no Show implementations for functions either, for the same reason.

3.2.2. Primitive Editorable implementations. The existing elaborator reflection

system is enough to define Editorable implementations for some of the most common

types in Idris. However, communication of Idris terms between the editor and the com-

piler is not straightforward. The main reason for that there is a colossal gap between

the type of terms that our custom editor actions use, and the Idris terms we write in

our editor. This gap is because Idris terms are written using the high-level surface lan-

guage, and Elab actions deal with the core language terms. Therefore when we send

the code for a term from the editor to the compiler, we will send a code in the surface

syntax. Similarly, when the editor receives a piece of code from the compiler, that also

has to be in the surface syntax. This is because when the editor takes some code from

the file, or puts some code back to the file, it does not know how to turn that into a core

language term. This conversion, also called elaboration as explained in section 2.2, can

only be done in the Idris compiler.

4 We can fail on them too if we wanted to. The reason we choose not to here is that many tactics use
gensym, which gives back a MN name.
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If the editor can only deal with surface-syntax terms, and the Elab actions can only

work with core language terms, the system we are designing must take care of the con-

version between the two. Specifically, the Editorable interface that we defined above

can be made responsible for this.

When the S-expression received by the compiler contains a string that is supposed

to be a piece of Idris code, fromEditor should parse the string into a surface-syntax

code, and then elaborate that into a core language term. Only after that can we run the

Elab editor action that we want to execute.

Similarly, when we finish running the Elab action, toEditor should delaborate5 the

core language code to surface-syntax code, and then it should pretty print it as a string.

The resulting string can be sent back from the compiler to the editor in an S-expression.

In subsection 2.2.1, we talked about the core language types that are reflected in

Idris. We have already seen the definitions of the types TT and TTName, and we have

touched upon TyDecl, DataDefn, FunDefn, and FunClause. We will not concern ourselves

with Raw right now, since solving the problem for typed core language terms suffices to

solve the same problem with untyped one; we can always type-check a Raw term into a

TT, or forget the type of a TT term into a Raw one.

Notice that we have already given an Editorable implementation of TTName above,

since names in the surface syntax and core language are the same. Elaboration can take

care of namespace resolution, but that can be achieved with Elab tactics as well.

However, for the other core language types, we should define Editorable imple-

mentations. As we discussed above, the editor can only send and receive pieces of code

in the surface syntax, which means we have to do parsing, elaboration, delaboration

and pretty printing in our Editorable implementation. It is not possible to write this

implementation in Idris, because Idris does not reflect the surface syntax, or parsing or

pretty printing with it. Therefore, we will hard-code the implementations of TT, TyDecl,

5 Delaboration is the name in the Idris compiler for converting core language code to surface syntax code.
It is meant to be the opposite of elaboration.
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DataDefn, FunDefn, and FunClause into the compiler, which allows us to do direct reflec-

tion [8] by making use of the already existing compiler implementations of the steps we

listed above.

To achieve this, we will have to extend the existing Elab monad with primitives that

go through the steps we mentioned above. We will have to define two primitives for

each other those types, one for fromEditor and one for toEditor. Instead of adding

two primitives for each of those types, we can only add two primitives and make them

polymorphic, and add a constraint on what types it can be used for. This would save us

from adding new primitives to Elab every time we want to add a primitive Editorable

implementation.

What we mean by a constraint here is a predicate on types, i.e. a Type-indexed type

family that describes which types can be used in the primitives for fromEditor and

toEditor we are about to define.

Figure 3.12. Definition of the HasEditorPrim predicate in Idris.

Idris
data HasEditorPrim : Type -> Type where

HasTT : HasEditorPrim TT
HasTyDecl : HasEditorPrim TyDecl
HasDataDefn : HasEditorPrim DataDefn
HasFunDefn : HasEditorPrim (FunDefn TT)
HasFunClause : HasEditorPrim (FunClause TT)

Now we can use the predicate HasEditorPrim to define our two new Elab primitives:

Figure 3.13. New Elab primitives for serialization and deserialization that de-
pend on HasEditorPrim.

Idris
prim__fromEditor : {auto has : HasEditorPrim a} -> SExp -> Elab a
prim__toEditor : {auto has : HasEditorPrim a} -> a -> Elab SExp
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Notice that their first argument is the predicate HasEditorPrim applied to the type

a, and it is an implicit argument that Idris should try to automatically solve. This saves

us from having to pass around a constructor every time we want to use the primitive.

Using these two primitives, the Editorable implementation definitions for the core

language types all look alike:

Figure 3.14. Editorable implementation for TT, that depends on the new Elab
primitives.

Idris
implementation Editorable TT where

fromEditor x = prim__fromEditor x
toEditor x = prim__toEditor x

We now know what primitive we want to have and we know what we want it to do.

We will discuss the implementation of the Elab actions for fromEditor and toEditor in

the compiler in section 4.3.

3.2.3. Using Editorable in the compiler and the %editormodifier. The motivation

behind the Editorable interface is twofold:

(1) to check whether a given Elab action is suitable to be used as an editor action.

(2) to use the fromEditor and toEditor definitions to serialize and deserialize data

when the action is run.

The first motivation means all argument and return types should have

an Editorable implementation. If we want to write a toy editor action

toy : TTName -> TT -> Elab TT, then the compiler must check if TTName, TT (from

the second argument) and TT (from the return type) are all Editorable. If any of the

argument of return types do not have an Editorable implementation, then we should

not be able to run the given action from the editor. In fact, to make the distinction

clearer, we add a new function modifier syntax %editor to Idris, that checks it during

type-checking. We explain its implementation in section 4.6.
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Figure 3.15. Type declaration for the toy editor action we want to define.

Idris
%editor
toy : TTName -> TT -> Elab TT

When used before the type declaration of a function, Idris makes sure during type-

checking that this function’s argument and return types all have an Editorable imple-

mentation. If they do not, then the user gets a type-error that tells them that since they

declared that Elab action an editor action, they must provide an Editorable implemen-

tation for all argument and return types, and the error tells them which one is missing.

The second motivation for Editorable allows the compiler to communicate

with the editor via S-expressions. When the editor sends an S-expression like

((:elab-edit "toy" ’("q" "S Z") 35 5) 20) to the compiler with the intent of run-

ning an Elab action, the following steps should happen:

(1) The S-expression we are given contains the name of the Elab action, namely toy.

We must lookup the name in order to resolve its namespace and also learn the

type of the action.

(2) We check if toy has been marked as an editor action using %editor. If not, we

fail the editor action.

(3) We “collect” the components of the type of the Elab action. For toy, from the

type signature TTName -> TT -> Elab TT we obtain the component list with

three members: TTName, TT, and Elab TT. Since the last one is the return type for

the action, we check the number of arguments we are given by the S-expression,

and ’("q" "S Z") has two elements, has exactly one fewer element than the

component list we collected above.

(4) Observe that the argument members of the component list match the argu-

ments list S-expression one to one. The argument components for toy are

TTName and TT, and we are given the S-expressions "q" and "S Z". If we zip

these lists, we get pairs of S-expressions and what type they will have when
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they are parsed. Then, Idris parses them using the fromEditor function for

their respective Editorable implementations.

(5) Then we will have a list of terms in the compiler that correspond to a TTName

and a TT. All we have done so far was to check if toy was a valid editor action,

and then to parse the inputs just so that we can run toy. The next step is to run

toy.

(6) When we are done with that, we know we will get a term of the type TT, because

toy’s type signature ends with Elab TT. That means we can use toEditor from

the Editorable implementation of TT, which gives us an S-expression.

(7) We can now send that S-expression back to the editor.

3.3. Examples in action

3.3.1. Successful example. We now know how the compiler should work with the

Editorable interface. To illustrate how it works in reality, let’s finish the toy editor

action we started above.

Figure 3.16. Implementation of the toy action in Idris.

Idris
%editor
toy : TTName -> TT -> Elab TT
toy n t = do (_, _, ty) <- lookupTyExact n

case ty of
`(Nat) => pure t
_ => fail [NamePart n, TextPart "is not a Nat!"]

Here is what we expect from this Elab action: we will pass it two arguments: the

first one is a name of a hole, and the second one is a core language term. If the type of

the hole is Nat, then we will return the term that we are given, otherwise we will fail.

To be able to call this editor action from Emacs, we will have to write a bit of Emacs

Lisp:
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Figure 3.17. Necessary Emacs Lisp code to run the toy action.

Emacs Lisp
(defun idris-elab-hole-arg (action args)

"Run Elab action in editor, replace the hole with the result"
(interactive)
(let ((result (car
(idris-eval
`(:elab-edit ,action ,args

,(idris-get-line-num) ,(current-column))))))
(save-excursion
(apply 'delete-region (idris-hole-start-end))
(insert result))))

(defun idris-toy ()
"Run the toy Elab action in editor"
(interactive)
(let ((term (read-string "Enter a term:")))
(idris-elab-hole-arg "toy" `(,(idris-name-at-point) ,term))))

The first function, idris-elab-hole-arg, is a general function that can be reused

by other hole-based editor actions. It takes a name of an action and a list, and sends

them to the Idris executable, also adding the line and column numbers. When it gets a

response, it deletes the hole that the cursor is on, and replaces it with the string/code

that was just received from the compiler.

The second function, idris-toy, is the little piece of code that runs the toy editor

action we defined above. It asks the user to enter some code, and when they do, it uses

idris-elab-hole-arg to send to Idris a message that consists of the name under the

cursor and that term the user just typed in. Notice that the name under the cursor will

be parsed as a TTName, type of the first argument of toy, and the term we typed in will

correspond to TT, type of the second argument of toy.

Suppose we want to use this new editor action now.
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Figure 3.18. Example Nat declaration to run toy on.

Idris
n : Nat
n = ?q

We can place the cursor on ?q and then run the idris-toy function in Emacs, possi-

bly through a keyboard shortcut we assign to it. By definition of idris-toy, Emacs asks

us to enter a term, suppose we write S Z and press enter. The following communication

happens in the background with the compiler:

Figure 3.19. Communication to run toy on the hole ?q.

S-expression
-> ((:elab-edit "toy" ("q" "S Z") 35 5) 20)
<- (:return (:ok "1" nil) 20)

We send the Elab action name toy and the list of arguments as an S-expression. Idris

sends back the result of the Elab action when run with the arguments ?q as the name,

and the core language term for S Z, which is Prelude.Nat.S Prelude.Nat.Z. Since the

type of our hole is Nat here, toy just returns the same term we give it, but it pretty prints

it as 1.

By the definition of idris-elab-hole-arg, the result 1 replaces the hole ?q in the

file. The resulting code is this:

Figure 3.20. End result of running toy on the hole ?q.

Idris
n : Nat
n = 1

3.3.2. What Editorable precludes. Suppose we wanted to write a polymorphic ed-

itor action, that merely returned its argument back.
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Figure 3.21. A polymorphic editor action poly in Idris that is supposed to fail.

Idris
%editor
poly : a -> Elab a
poly x = pure x

First of all, observe that the type declaration above actually is

{a : Type} -> a -> Elab a, which means there is an implicit argument in the

beginning that has the type Type.6

The problem with this is that, the editor has to tell the compiler what type of result

we want to get at the end. We do not yet have a way to communicate a value of the

type Type between the editor and the compiler, i.e. we cannot define an Editorable

implementation for Type in Idris itself, because Idris does not allow us to pattern match

on types, since that breaks parametricity and creates problems with type erasure [16].

We will not explore adding such an Editorable implementation as a primitive. We will

instead disallow polymorphic editor actions.7 When we try to compile poly, we get the

following error:

Figure 3.22. Error message that shows why poly fails.

Idris error message
You declared poly to be an editor action, but there's no
Language.Reflection.Editor.Editorable implementation for Type

Here is another custom editor action we want to preclude:

6 Type is the type of types in Idris, similar to * in Haskell and Set in Agda, but with a caveat: Haskell’s
* has the type * [26], while Agda has universe polymorphism and Idris has cumulativity. This means
Agda and Idris manage to avoid Girard’s paradox, but Haskell does not even attempt that, “... not that
there’s anything wrong with that.” [14]

7 We leave polymorphic editor actions to future work. We argue that monomorphic editor actions suffice
in almost all use cases in the editor.
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Figure 3.23. A higher-order editor action funAction in Idris that is supposed to fail.

Idris
%editor
funAction : (Nat -> Nat) -> Elab ()
funAction x = pure ()

We do not have a way to serialize and deserialize functions of the type Nat -> Nat,

so therefore we should not allow funAction to be declared an editor action.8 When we

try to compile funAction, we get the following error:

Figure 3.24. Error message that shows why funAction fails.

Idris error message
You declared funAction to be an editor action, but there's no
Language.Reflection.Editor.Editorable implementation for Nat -> Nat

We have now seen the motivations behind the Editorable interface and why we

defined it this way. We have also demonstrated that this definition is useful for serial-

ization and deserialization of the data used in editor actions, and that for the unseri-

alizable kinds of data, such as functions, Editorable acts as a gatekeeper. In the next

chapter, we will look at how this design is implemented in the Idris compiler in Haskell.

8 Remember that we cannot inspect a function’s body; we can only apply arguments to a function.



CHAPTER 4

Implementation

4.1. Additions to the Idris standard library

Out of the types we skimmed through in subsection 2.2.1, TT, Raw, and TTName

reside in the Language.Reflection module, and TyDecl, DataDefn, and FunDefn live

in Language.Reflection.Elab. This is because Idris only has quotation of terms, as

we reviewed in subsection 2.2.2, so the definitions we will need in quotations are in

Language.Reflection. The ones that are not needed by quotation but are needed for

elaborator reflection are in Language.Reflection.Elab.

Out of the types we defined in section 3.2, SExp should live in

Language.Reflection.Elab since Elab will depend on it. However, the new inter-

face Editorable should live in Language.Reflection.Editor.

Remember from Figure 3.13 that we added two new Elabprimitives to our language,

namely prim__fromEditor and prim__toEditor. The way Elab primitives work in Idris

is that there is a constructor in the Elab data type for each of them. Therefore we need to

add those constructors and then define prim__fromEditor and prim__toEditor in terms

of them.

39
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Figure 4.1. New constructors for the new Elab primitives, and function defini-
tions based on them.

Idris
export
data Elab : Type -> Type where

-- the constructors we had before
Prim__FromEditor : {a : Type} -> HasEditorPrim a -> SExp -> Elab a
Prim__ToEditor : {a : Type} -> HasEditorPrim a -> a -> Elab SExp

export
prim__fromEditor : {auto has : HasEditorPrim a} -> SExp -> Elab a
prim__fromEditor {has = x} sexp = Prim__FromEditor x sexp

export
prim__toEditor : {auto has : HasEditorPrim a} -> a -> Elab SExp
prim__toEditor {has = x} y = Prim__ToEditor x y

We make the additions in Figure 4.1 in Language.Reflection.Elab. Notice that

export for Elab does not export the constructors for the module, and we do not want to

export all the primitive actions without any limits; we want to make Elab more abstract.

For that purpose, we define prim__fromEditor and prim__toEditor that we actually can

export. Compared to the types of the constructors we defined, types of the functions

we defined are made more user-friendly by making the HasEditorPrim argument auto-

matically inferrable by proof search, which is a helpful feature of Idris usable via the

auto keyword.

We will inspect in how these new constructors will be used in the compiler, but first

we have to clarify some terminology.

4.2. Reflection and reification in the compiler

Before we delve into further details of the implementation, we should compare and

contrast certain terminology we will use in this chapter. The graph in Figure 4.2 de-

scribes the relationship between the different kinds of languages and representations

and the spells out the specific names for moving from one to another.
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Figure 4.2. The relationship between reflection, reification, quotation, unquo-
tation, elaboration and delaboration.
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In the previous sections, we have informally used the word “reflection” to refer to

the act of providing an Idris representation for a Haskell type we use in the compiler.

That was handwavy but still accurate: In the graph we defined reflection as moving

from a Haskell term to the Haskell representation of an Idris term. Since this holds

for any Haskell term, you can also take a Haskell term that is itself an internal Haskell

representation of some Idris syntax. When you reflect that, you get the internal repre-

sentation of an Idris representation of the Haskell representation of an Idris term. Our

previous usage of “reflection” was only a special case of the word, but in this section,

we will use the generalized definition.2

1 In the compiler source code in Haskell, both Term and Type are aliases for TT Name. This should not be
confused with the type of reflected names, TTName, defined in Idris. In the compiler, the type of typed
core language terms, TT, is indexed by the type of names in that term. The type of names in the compiler
is called Name, therefore TT Name in the compiler is the type of core language terms with the usual names.
We will stick with Term and Type in this thesis to avoid this confusion.

2 We should clarify that there is no infinite regress here. When we quote an Idris term, we still get an Idris
term, of the type TT, which then can be quoted again and again if necessary. However, all of these are
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Let’s give an example and see what we mean by this. We defined the Idris type SExp

in Figure 3.7. When we will define fromEditor and toEditor in section 4.3, we will need

to convert Haskell terms of the Haskell type SExp into the internal representation of an

Idris term of the Idris type SExp, and vice versa.

The conversion from the former to the latter is reflection. We write the function

reflectSExp in Figure 4.3.

Figure 4.3. The function to reflect Haskell terms of the type SExp to the internal
representations of Idris terms of the Idris type SExp.

Haskell
reflectSExp :: SExp -> Raw
reflectSExp (StringAtom s) =

RApp (Var (tacN "StringAtom")) (RConstant (Str s))
reflectSExp (SymbolAtom s) =

RApp (Var (tacN "SymbolAtom")) (RConstant (Str s))
reflectSExp (BoolAtom b) =

RApp (Var (tacN "BoolAtom")) (reflectBool b)
reflectSExp (IntegerAtom i) =

RApp (Var (tacN "IntegerAtom")) (RConstant (BI i))
reflectSExp (SexpList l) =

RApp (Var (tacN "SExpList"))
(reflectList (Var (tacN "SExp")) (map reflectSExp l))

Observe that in the reflectSExp, we are returning a Raw term, a core language term

that is untyped. This mainly for convenience: it is easier to write the syntax trees for

untyped terms. We can always type-check them later.

To get a Haskell term of the type SExp from an internal representation of an Idris

term that has the Idris type SExp, we have to write a function reifySExp that reifies a

given Term, which you can see in Figure 4.4:

still representable in Idris. Similarly, a Haskell term can be reflected again and again, and the Term type
is enough to express this.
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Figure 4.4. The function to reify the internal representations of Idris terms of
the Idris type SExp to Haskell terms of the type SExp.

Haskell
reifySExp :: Term -> ElabD SExp
reifySExp (App _ (P _ n _) x)

| n == tacN "StringAtom" = StringAtom <$> reifyString x
| n == tacN "SymbolAtom" = SymbolAtom <$> reifyString x
| n == tacN "BoolAtom" = BoolAtom <$> reifyBool x
| n == tacN "IntegerAtom" = IntegerAtom <$> reifyInteger x
| n == tacN "SExpList" = SexpList <$> reifyList reifySExp x

reifySExp tm = fail ("Not an SExp: " ++ show tm)

Observe in reifySExp that we are returning ElabD SExp.3 This is because reification,

unlike reflection, can fail. This function is designed to reify the internal representation

of S-expressions. If the Term it receives does not correspond to one, reification should

fail.

Now that we know what reflection and reification mean in the context of compiler

development, we can move on to how they are used in implementing primitive imple-

mentations for Editorable.

4.3. Primitive Editorable implementations

In subsection 3.2.2 we discussed why core language types like TT, TyDecl, DataDefn,

FunDefn, and FunClause must have primitive implementations of the Editorable inter-

face. Recall that for each of these types, the editor can only send a piece of code to the

compiler as a string which contains code in the surface language, however these types

are in the core language. There are many steps in between that we are missing, such as

parsing, elaboration, delaboration and pretty printing.

Now let’s see how we implemented this in the Idris compiler. Tactic evaluation in

the compiler happens in runElabAction, which is defined in the compiler source code.

Inside that, there is a helper function runTacTm that takes a typed term corresponding

3 ElabD is an alias for the Elab’ monad combined with some special state, this does not concern us in this
thesis.
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to a value in the Elab monad of Idris, which should correspond to a Elab primitive con-

structor applied to arguments, i.e. when the Elab action term is in a normal form. Then

we can check which primitive constructor we are dealing with and behave accordingly.

Figure 4.5. The runElabAction function in the compiler, how Elab action terms
are run under the hood.

Haskell
runElabAction :: ElabInfo -> IState -> FC -> Env

-> Term -> [String] -> ElabD Term
runElabAction info ist fc env tm ns = do tm' <- eval tm

runTacTm tm'

-- some helper functions ...

runTacTm :: Term -> ElabD Term
runTacTm tac@(unApply -> (P _ n _, args))
| n == tacN "Prim__Solve"
= do ~[] <- tacTmArgs 0 tac args

solve
returnUnit

-- other cases for other constructors

In Figure 4.6 we can observe how runElabAction is defined in the compiler. It takes

many arguments, such as information for the elaborator, the internal state of the com-

piler at that point, the source location of the action, the environment under which the

Elab term should be evaluated to a normal form, the term that represents the Elab ac-

tion term, and a namespace. For our purposes, we do not have to worry about all of

these.

In the definition of runElabAction we evaluate tm to a normal form of the Elab ac-

tion, and then we check in runTacTm which form we want run.

If we have a non-neutral normal form of the Elab action, that means when we decide

that what we have is a global variable term, which is a constructor, represented by P,

or it is a series of applications to a variable term that is a constructor. We can handle

both situations with the unApply :: Term -> (Term, [Term]) function, which dissects



4. IMPLEMENTATION 45

multiple curried function applications into the the term that should be a function and

the list of argument terms passed to it.4

Figure 4.6 demonstrates how an example Elab action term is treated by runTacTm.

For the primitive version of the solve action, which is represented by the Prim__Solve

constructor in Elab, we first make sure that there are no given arguments, and then run

solve :: Elab’ aux () in the internal elaborator monad. If these all succeed, we return

the reflected unit term back.

Now, in order to add more Elab primitives, we have to implement similar cases

for Prim__FromEditor and Prim__ToEditor in runTacTm, which we started to do in Fig-

ure 4.6.

4 A term that is not a function application will be treated as a function application with no arguments
passed.
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Figure 4.6. Adding cases for Prim__FromEditor and Prim__ToEditor in
runTacTm in the compiler.

Haskell
runTacTm :: Term -> ElabD Term
runTacTm tac@(unApply -> (P _ n _, args))

-- other cases for other Elab primitives
| n == tacN "Prim__FromEditor"
= do ~[ty, hasEditorPrim, arg] <- tacTmArgs 3 tac args

ty' <- eval ty
arg' <- eval arg
case ty' of
P _ tyN _ | tyN == reflm "TT" ->
-- now we want to convert an S-expression to TT

P _ tyN _ | tyN == tacN "TyDecl" ->
-- now we want to convert an S-expression to TyDecl

-- other cases for other core language types
| n == tacN "Prim__ToEditor"
= do ~[ty, hasEditorPrim, arg] <- tacTmArgs 3 tac args

ty' <- eval ty
arg' <- eval arg
case ty' of
P _ tyN _ | tyN == reflm "TT" ->
-- now we want to convert a TT into an S-expression

P _ tyN _ | tyN == tacN "TyDecl" ->
-- now we want to convert a TyDecl into an S-expression

-- other cases for other core language types

Observe that we left most parts in here blank, let’s zoom in to the TT cases of

Prim__FromEditor and Prim__toEditor. The actual code blocks for them refer to many

helper functions that are difficult to follow; we will instead explain what they do in

detailed prose. We will use the variable names in Figure 4.6, so it would be helpful to

look back at the code excerpt when a name is unclear.

For the TT case of Prim__FromEditor that we left as a comment before, we have to

do the following steps:

(1) We have an Term named arg’ representing the S-expression passed to the

Prim__FromEditor, we have to reify this using reifySExp and get a Haskell term

with the Haskell type SExp.



4. IMPLEMENTATION 47

(2) Remember from subsection 3.2.2 that we should receive a string atom S-

expression. We fail if the SExp we get in the previous step is not a string atom.

Otherwise we have access to the string s.

(3) We parse the string s into a abstract syntax tree term pterm of the surface syntax,

which is represented by the type PTerm in the compiler. We therefore obtain the

variable pterm.

(4) Elaboration cannot resolve namespaces in the parsed surface

syntax terms. Using the current context, we write a function

resolveNames :: Context -> PTerm -> Either Err PTerm that traverses

the the surface language abstract syntax tree using Uniplate [43], and then

at the PRef terms, i.e. variable references, we search the context to find the

matching fully namespaced name. If there is a unique matching name, we

change the name. If there are multiple matching names, we return an error

that there is ambiguity in the name. If there are no finds, we leave it as is and

let elaboration handle the rest. We apply the current context and pterm to this

function and obtain pterm’, the surface syntax term with resolved names.5

(5) Elaborate pterm’ into the core language and get t.

(6) Now, remember that our function fromEditor must return Elab TT in this con-

text. Therefore in the Haskell implementation, we want to return the Haskell

representation of the Idris representation of the Haskell representation of the

given code. In other words, we have to reflect t, which is a Term, and then get

a Raw term, which is a Haskell representation of the Idris representation of t.

We can call the reflected term reflected.

(7) runTacTm requires us to return a Term, therefore we type-check reflected and

get a Haskell term of the type Term, which we can call tmReflected.

(8) When we return a core syntax tree, we want to return it in normal form, there-

fore we normalise tmReflected and return it.

5 We can do better when there is a known context and type, e.g. at a hole. Then we could elaborate in a
local synthesized context to use types for overloading. This is a possible direction for future work.
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For the TT case of Prim__ToEditor that we left as a comment before, we have to do

the following steps:

(1) We have an Idris term arg’ representing the TT term passed to the

Prim__ToEditor, we have to reify this using reifyTT and get a Haskell term

with the Haskell type Term. In other words, we are given the Haskell represen-

tation of the Idris representation of the Haskell representation of a term. We

want to get the Haskell representation of that term, using reification.

(2) We now have a Term term named v. We delaborate and resugar v and get the

surface syntax version of it. We name the delaborated version pterm, which

has the type PTerm.

(3) We pretty print pterm and get a string s.

(4) With s, we can create StringAtom s, which is a Haskell term with the Haskell

type SExp. Using reflectSExp, we can get the Haskell representation of an Idris

term that has the Idris type SExp, which we call tm.

(5) When we return a core syntax tree, we want to return it in normal form, there-

fore we normalise tm and return it.

The primitive implementations for the other types, namely TyDecl, DataDefn,

FunDefn, and FunClause, are not significantly different from TT. Hence we will not go

over them.

In the next section, we will see how we will deal with the issue of local contexts

when we elaborate terms we receive from the editor.

4.4. Extensions to elaboration and the internal Idris state

In subsection 3.2.3, we talked about how we wanted to deserialize S-expressions

into the arguments to the Elab action we want to run. As we seen in the previous

section, in order to deserialize an S-expression into a term of the type TT, we have to

parse, elaborate and reflect. During elaboration, we cannot have any unbound variables,

otherwise we get an error.
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Nevertheless, the editor can send to the compiler code pieces that contain local vari-

ables. Handling the global context is easy, but when it comes to a local context, e.g. if

the code snippet we received uses a variable whose binding is introduced by let, case,

or a lambda elaboration is doomed to fail. We need to find a way to get the local context

at a given position, and then pass it to elaboration.

If we restricted Elab editor actions to only holes, this would not have been a problem,

since holes already provide a way to query the local context at them. For other names

and terms, however, we do not have a way.

To solve this problem, we extended the elaboration state with an interval map in

which keys are source locations, i.e. a pair of line and column numbers, and values

are local contexts, i.e. environments. We use the finger tree implementation of interval

maps in Haskell [32].

For those who are unfamiliar, an interval map is a data structure that maps intervals

to values. Every entry consists of the interval between two keys, and a value associated

with the interval. One can query the map with a single key, and get the values in the

map which are mapped by the intervals that the key is in.

During elaboration, we still have access to the source locations of all terms. There-

fore we can register the interval between the start and end locations of the term in the

source code, and then map it to the local context. Following the terminology we used

in the compiler, we will call this map the source map.

This task required significant refactoring, since the source map needs to be pre-

served during elaboration of different parts, and also after elaboration. Elaboration it-

self cannot change the internal Idris state IState; however, it has its own state ElabState.

When elaboration finishes, we then update IState with the additions.

In the next section, we will see how exactly fromEditor and toEditor are used in

the IDE mode of the compiler to communicate with the editor.
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4.5. Extensions to the Idris IDE mode

Idris’ IDE mode has an S-expression parser, which looks at the shape of an S-

expression and creates a IDE mode command value based on it. We extend this parser

by adding a line that says that if we see a symbol atom :elab-edit, a string atom for

the Elab action name, an S-expression list, and two integer atoms for line and column

numbers (in that order), then we add a new IDE mode command in the compiler.

These commands are passed around for a while in the compiler, however eventually

there are separate functions that deal with each editor command. We write the function

for edit-time tactics under the name elabEditAt in Figure 4.7.

Figure 4.7. The function elabEditAt that runs editor actions in the compiler.

Haskell
elabEditAt

:: FilePath -- ^ The file name in which the Elab action is run
-> String -- ^ The name of the action
-> (Int, Int) -- ^ The line and column number the action is run on
-> [SExp] -- ^ The arguments to the action
-> Idris ()

elabEditAt filename nameStr pos args = ...

Once again the actual code block for elabEditAt refers to many helper functions

that are difficult to follow; we will instead explain what it does in detailed prose. This

will read like a much more detailed version of our description in subsection 3.2.3 about

how Editorable works in the compiler.

Here are the steps elabEditAt takes when it is called:

(1) The variable nameStr, which has the Haskell type String, holds the name of the

Elab action we want to run. However, we need to parse this string into a Name,

in order to get any namespace information that is provided inside nameStr. If

there is any namespace information, we use NS, otherwise we use UN. We call

the result name, which has the type Name.
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(2) Now we have name, yet we do not know whether it really refers to a existing

Elab action. If it does what is its type? We consult the context and find out its

type, which we can call ty, which has the Haskell type Type. From the context,

we also resolve the name of the Elab action if we need to, we call the resolved

name ns.

(3) Using the resolved name ns, we look up the flags declared for this function. We

check if the it has been declared an editor action using the %editor modifier. If

not, we do not proceed.

(4) We are given a list of SExps, which is the list that the editor passes to the com-

piler to apply the editor action they want to call. However, we have to check

whether this list contains the right number of arguments, and for that we need

to know how many arguments the editor action should have. For that, we can

write a function collectTypes that takes a the Type ty and gives us a list of

Types, which are the components of ty, i.e. curried arguments and also the

return type.

Figure 4.8. The function collectTypes to dissect a type signature to its components.

Haskell
collectTypes :: Type -> [Type]
collectTypes (Bind _ (Pi _ _ t1 _) t2) = t1 : collectTypes t2
collectTypes t = [t]

We apply ty to collectTypes and name the result collected, which is a list

of Types.6

(5) We check if the length of collected is exactly one more than the length of args,

because the last element in collected is the return type of the Elab action.

6 Observe that this throws away the binding structure of the Π-type, which mean %editor actions cannot
have dependent types. As we mentioned before about polymorphic editor actions, we believe monomor-
phic non-dependently-typed editor actions suffice for almost all editor actions. We leave further explo-
ration for future work.
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(6) Using the interval map we defined in section 4.4 and the line and column num-

ber the cursor in on, which are given to elabEditAt as arguments, we query the

local context at the cursor location, which we call env.

(7) We zip collected and args and get a list of pairs of Type and SExp. For

each of the pairs, we have to do the following and get a result for each

pair of (argTy, sexp):

(a) We construct an Haskell representation of an Idris term that calls

fromEditor. Remember that fromEditor is polymorphic and also has an

interface constraint; therefore, constructing this as a Term is not trivial. As

a shortcut, we can construct a PTerm that explicitly applies the polymorphic

type, which will be argTy in this case.

(b) We elaborate the PTerm we construct above, which gives us tm, the Haskell

representation of an Idris term that has the type represented by argTy, but

in the Idris Elab monad.

(c) Since tm is the Haskell representation of an Elab action, we should run it

using runElabAction, under the local context env. This gives us tm’, the

Haskell representation of a term that has the type represented by argTy.

(d) We return tm’ as the result for the pair (argTy, sexp).

(8) We make a list of all the tm’s returned for each pair.

(9) Remember that this list consists of the results parsing each S-expression into

what type they represent. Therefore, its elements are actually Haskell represen-

tations of argument for the Elab action we want to call. Hence, we construct a

term by applying the elements of the list to the variable reference to ns, which

we can call app.

(10) Now we have a Haskell representation of an Elab action, because we applied

all the arguments required. From the last element of collected, which is sup-

posed to be the return type, we can find out what type the term we expect

when we run app. The last element of collected is a Haskell representation of
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an Idris type in the shape of Elab a, for some a. We extract the Haskell rep-

resentation for the Idris type a from it. We name the extracted representation

lastTyInElab.

(11) Using runElabAction and lastTyInElab, we run app. This gives us res, the

Haskell representation of a term that has the Idris type that lastTyInElab rep-

resents.

(12) We want to serialize this term before returning it as an S-expression. The only

way we know how to serialize is through the toEditor function in Editorable,

but remember that toEditor is defined in Idris. We thus construct a Haskell

representation of an Idris term that calls toEditor, similar to how we con-

structed an application term for fromEditor before in item 4a. For convenience

in implementation resolution, we first construct a PTerm, then elaborate it. We

call the elaborated term tm.

(13) Since tm is the Haskell representation of an Elab action, we should run it using

runElabAction. We get the Haskell representation of a term that has the Idris

type SExp.

(14) We reify the Haskell representation of that term into a Haskell term that has

the Haskell type SExp, using reifySExp, and get resSExp.

(15) We send a message to the client/editor and report that the action is successful,

and the result is resSExp.

This concludes the IDE mode section of implementing edit-time tactics.

4.6. Extensions to the type-checker for the %editor modifier

The last remaining part of the implementation is an additional restriction to type-

checking.

If a function is declared an editor action with the %editor modifier, we want to find

out during type-checking if it is viable to use them as an editor action, and an Elab

action is viable if the components of its type have implementations of the Editorable
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interface.7 We discussed this idea in the toy example in subsection 3.2.2, and also have

seen the type errors you can get in subsection 3.3.2. Now let’s see how we implement

this feature.

To the elabType’ function in the compiler, we add the following:

(1) We use collectTypes that we defined in Figure 4.8 to get the components of

the type signature, we will call this list of Types collected.

(2) The last element in collected is supposed to be return type. We extract

lastTyInElab, which is the Haskell representation of the Idris type in the Idris

Elab monad, the same way we did in item 10.

(3) We replace the last element in collected with lastTyInElab, and name the

new list toCheck.

(4) For every element ty in toCheck, we do the following:

(a) We want to find out if there is an Editorable implementation for the Idris

type ty represents. The easy way to do that is to construct a PTerm of a

fromEditor application and then elaborate it, as we did in before, which

should resolve implementation constraints, or give an error if it cannot.

(b) If there is no error, we move on to the next ty silently. If there is an er-

ror, that implies that there was no Editorable implementation for the Idris

type ty represents. Then we send an error message like the ones in subsec-

tion 3.3.2 back to the editor.

This concludes the implementation of edit-time tactics in the Idris compiler. Re-

member that the part we described here is only for the compiler; it is just one step of

how edit-time tactics work. For the communication between the editor and the com-

piler, we have to write some editor language code, i.e. Emacs Lisp, that would send

and receive messages. We showed in Figure 3.17 what that would look like.

In the next chapter, we will see real applications of edit-time tactics.

7 Encoding this as a universe could be a starting point for dependently-typed editor actions.



CHAPTER 5

Applications

5.1. A tactic to replace the built-in “add clause” action

We have seen in chapter 1 how the “Add initial match clause to type declaration”

editor action works. When the cursor is on the type signature of a function that does

not have any clauses, we can run this editor action and get an initial clause for the

function.

In this section we implement this editor action for top-level type declarations with-

out implicit arguments or interface constraints, using edit-time tactics. The Idris code

we need to write is in Figure 5.1.

Figure 5.1. Implementation of the edit-time tactic for “add clause”.

Idris
collectTypes : TT -> (List TT, TT)
collectTypes (Bind _ (Pi ty _) t) =

let (xs, t') = collectTypes t in
(ty :: xs, t')

collectTypes t = ([], t)

%editor
addClause : TTName -> Elab (FunClause TT)
addClause n =

do (_, _, ty) <- lookupTyExact n
ty' <- normalise !getEnv ty
let (argTys, retTy) = collectTypes ty'
argNames <- traverse (const fresh) argTys
let lhsUntyped = foldl RApp (Var n) (map Var argNames)
env <- getEnv
(lhsTyped, _) <- check env lhsUntyped
holeName <- fresh
let rhs = Bind holeName (GHole retTy) (V 0)
pure (MkFunClause lhsTyped rhs)

55
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The collectTypes function we write in Idris is very similar to the one we defined

in Figure 4.8 for the compiler implementation. This one, however returns a pair of the

list of inputs and the output type.

The addClause tactic only takes one input, which is the name of the function we

will add an initial clause for. Using this name, we look up the type of that function, nor-

malize the type, and get its components using collectTypes. We name the list of input

types argTys, and the output type retTy For each of member of argTys, we generate a

new name using fresh.1 We later use these names and make them into variable terms,

using Var, and create a function application using all of these names. This application

is supposed to represent the left-hand side in our final definition. The right-hand side

is a hole term that has the type retTy. This concludes our type declaration term.

The Emacs Lisp code we write for this is the same as the existing add-clause editor

action, so we only have to change the part that Emacs sends a message to the compiler.

Our message now should refer to addClause instead of the built-in add-clause editor

action.

Let’s see this Elab action at work in Figure 5.2.

Figure 5.2. Example function to run addClause on.

Idris
example : (name : String) -> (age : Nat) -> IO ()

If we put the cursor on example and execute the Emacs Lisp code somehow, which

is often done via a shortcut, we will get the result in Figure 5.3.

Figure 5.3. Result of running addClause on the example function.

Idris
example : (name : String) -> (age : Nat) -> IO ()
example a b = ?c

1 fresh is defined in Hezarfen, not in a standard library. The standard way of creating fresh names is
gensym, but we wrote wrapper function fresh that does not generate MN, and gives variables readable
names, usually one-letter.
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This concludes the rudimentary replacement the the existing add-clause section.

For simplicity purposes, we have not covered the type signatures with implicit argu-

ments or interface constraints. One can write a tactic to handle those cases as well.

5.2. Theorem prover for intuitionistic propositional logic

In this section, we describe the tactic Hezarfen2, which can decide intuitionistic

propositional logic theorems.3 This tactic will be based on Dyckhoff’s LJT [24] and

its Haskell implementation Djinn [6], which generates Haskell expressions that have

a given type.

Djinn is a standalone program that takes commands interactively, and when it gen-

erates an expression it prints it on the screen. Instead, we want to design Hezarfen as a

library that provides an Elab action that can be used as a tactic in proofs, and also as a

custom editor action that helps us when the built-in proof search mechanism does not

suffice.

As a part of this library, we want to define the Elab action we used in section 3.1,

with the type prover : TTName -> Elab TT. This tactic takes the name of the hole it is

supposed to fill, and gives back a TT term in the Elab monad.

Since Hezarfen’s proof terms are sent back to the editor and put back into the source

code, we should aim to make our proof terms as simple as possible. Hence, we should

implement both proof term generation and simplification.

5.2.1. Proof term generation. In Hezarfen, define two types Context and Sequent

to help us represent the proof rules as manipulations of the goal type.

Figure 5.4. Definitions of Context and Sequent for Hezarfen.

Idris
data Context = Ctx (List (TTName, Raw)) (List (TTName, Raw))
data Sequent = Seq Context Raw

2 The name is pronounced [hezaRfæn], like “has are fan”, and it means polymath in Turkish. Tactic source
code is available at http://github.com/joom/hezarfen.

3 Similar to Coq’s tauto tactic.

http://github.com/joom/hezarfen


5. APPLICATIONS 58

A context is two lists of pairs that consist of names mapped to Raw terms that repre-

sent the type of the term that the name refers to. The reason we want to have two lists is

that we want to distinguish between the consumed and unconsumed bindings. Once we

use up an entry in the second list, we delete it from the second list. But we may want to

add new bindings, which we do on the first list. Suppose we have (C ∨D) ⊃ B in our

context. When we are checking the premises we want to remove it from the second list

and add C ⊃ B and D ⊃ B to the first list. In Dyckhoff’s presentation, this rule looks

like:

C ⊃ B, D ⊃ B, Γ =⇒ G

(C ∨D) ⊃ B, Γ =⇒ G

But in Hezarfen’s source code, this rule is written as in Figure 5.5.

Figure 5.5. The “Either implies” case in Hezarfen

Idris
breakdown' : Sequent -> Elab Tm
breakdown' goal = case goal of

-- numerous previous cases
Seq (Ctx g ((n, ˋ((Either ~d ~e) -> ~b)) :: o)) c =>
let (n1, n2, newgoal) = !(appDisjImplL (Ctx g o) (d, e, b, c)) in
let (l1, l2) = (!fresh, !fresh) in
pure $ RBind n1 (Let ˋ(~d -> ~b)

(RBind l1 (Lam d) (RApp (Var n)
ˋ(Left a=~d b=~e ~(Var l1)))))

$ RBind n2 (Let ˋ(~e -> ~b)
(RBind l2 (Lam e) (RApp (Var n)

ˋ(Right a=~d b=~e ~(Var l2)))))
!(breakdown False newgoal)

Understanding this code fully is not necessary; our goal is to give the greater picture.

This piece of code checks our second list in the context to see if there is a name with

the type (Either d e) -> b, for some d, e and b. If there is, using this name n, we can

create two functions, one with the type d -> b and the other with the type e -> b. We

generate two fresh names so we can name these functions, and then we create a proof
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term, in which we generate lambda bindings for these two functions we define in terms

of n. The rest of the proof proceeds recursively.

The remaining rules of proof term generation proceed similarly. For more detail on

what the generated proof terms are, see Dyckhoff’s paper or Hezarfen’s source code.

5.2.2. Simplification. In Hezarfen.Simplify, we define a function reduce that sim-

plifies a given Raw term into another Raw term in the Elab monad.4 A rudimentary im-

plementation of this function that does not include all the simplification steps is given

in ??.

Figure 5.6. Rudimentary implementation of reduce in Hezarfen.

Idris
reduce : Raw -> Elab Raw
reduce t = case t of

-- Eta reduction: (\x => f x) becomes f
RBind n (Lam b) (RApp t' (Var n')) =>
if n == n'
then reduce t'
else pure $ RBind n (Lam b) !(reduce (RApp !(reduce t') (Var n')))

-- (id x) becomes x
RApp (RApp (Var ˋ{id}) c) x => reduce x

RBind n b t' => pure $ RBind n b !(reduce t')
RApp t1 t2 => pure $ RApp !(reduce t1) !(reduce t2)
_ => pure t

In the full implementation, we do more complex simplifications, such as simplifying

(\x => g (f x)) into (g . f), removing unused let bindings, substituting a let

binding in the body if the binding is only used once, etc.

To fully simplify a Raw term, we repeatedly apply it to reduce until fixpoint, which

should be improved in future work.

There is also recent work on writing code generating theorem provers that are more

modular and efficient since they depend on an intermediate proof representation that is

4 We depend on the Elab monad for fresh name generation.
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later reconstructed [54]. Hezarfen directly deals with the untyped core language syntax

tree, both for the input terms that represent types, and for the proof term it returns, and

this causes some overhead in our tactic.



CHAPTER 6

Related work

6.1. In Haskell

Template Haskell [53] is the main metaprogramming mechanism in Haskell. It

is similar to elaborator reflection in the sense that metaprograms are defined in a

monad called Q, which allows metaprograms to create fresh names and look up defi-

nitions. Template Haskell metaprograms generate expressions and definitions, which

are among the capabilities of the Elab monad in Idris. However, there are significant

differences; quotations in Template Haskell return values in the Q monad, and Template

Haskell does not try to reflect the elaboration infrastructure of Haskell.1 Neither does

it hold an internal proof state that can be changed by monadic actions, nor it does try

to provide an alternative way to implement tactics in Haskell.2

Brian McKenna worked on expanding the definitions generated by Template

Haskell to source code, which then is pretty printed and put back into the source code

in Emacs using YASnippet.3

On the IDE feature side of things, Alan Zimmerman and Matthew Pickering de-

veloped ghc-exactprint4, which is a library that helps IDE and tooling development

by providing a way to automatically refactor Haskell programs without changing a

part of the program unintentionally. As they put it, their library respects “the identity

1 However, Haskell metaprogramming using the GHC core language has been discussed in the GHC de-
velopers mail list, with credit to Idris: http://mail.haskell.org/pipermail/ghc-devs/2015-November/
010402.html

2 That being said, Siva Somayyajula has a rudimentary implementation a tactic monad in Haskell based
on the Q monad: http://github.com/ssomayyajula/elab

3 His tweet with screenshots can be found at http://twitter.com/puffnfresh/status/
935274097642057728 and the project that enables this feature can be found at http://hackage.haskell.
org/package/th-pprint.

4 It can be found here: http://hackage.haskell.org/package/ghc-exactprint
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refactoring”, which is non-trivial if your system allows many different kinds of transfor-

mations [49]. There is also the Haskell IDE Engine project that aims to integrate many

Haskell tools based on the GHC API to the editor workflow, by providing a backend

for editor modes.5

6.2. In Agda

There is a line of work on bringing more automated theorem proving, proof au-

tomation and tactics, or metaprogramming to Agda. Lindblad and Benke (2006) intro-

duced a term search algorithm called Agsy, a proof search mechanism that aims to save

users’ time by automating parts of the proof that are straightforward but tedious to

write [35]. Agda has a derivative of this mechanism implemented as a part of its com-

piler. Kokke and Swierstra (2015) used the Agda’s prior reflection system to define a

new proof search mechanism in Agda itself [34]. The Hezarfen tactic we discussed in

section 5.2 is not as advanced as their auto function, yet in their paper, they discussed

a feature similar to edit-time tactics as future work:

“In the future, it may be interesting to explore how to integrate proof

automation using the reflection mechanism better with Agda’s IDE.

For instance, we could create an IDE feature which replaces a call to

auto with the proof terms that it generates. As a result, reloading the

file would no longer need to recompute the proof terms.” [34]

In this thesis, we generalized their suggestion to all tactics, and specified how the

editor/IDE and the compiler should communicate with each other in order to success-

fully call a tactic with inputs of the correct types.

There is also work on “proof by reflection” in Agda, which is different from our

usage of the word “reflection” so far.

“Reflection is an overloaded word in this context, since in program-

ming language technology reflection is the capability of converting
5 The project can be found here: http://github.com/haskell/haskell-ide-engine, and Alan Zim-
merman’s talk at the Haskell Implementors’ Workshop 2017 can be found here: http://youtu.be/
-pjQcG94CxM

http://github.com/haskell/haskell-ide-engine
http://youtu.be/-pjQcG94CxM
http://youtu.be/-pjQcG94CxM
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some piece of concrete code into an abstract syntax tree object that can

be manipulated in the same system. Reflection in the proof technical

sense is the method of mechanically constructing a proof of a theorem

by inspecting its shape.” [56]

We have been concerned with the first meaning of “reflection” in this thesis, how-

ever the work on the second meaning of this word is still relevant to proof automa-

tion, and their ideas can be reused in our edit-time tactics. Work by van der Walt and

Swierstra showed compelling examples of proof by reflection in Agda, such as a proof

mechanism for boolean tautologies [57].

6.3. In Coq

Coq has a metaprogramming mechanism called template-coq6 that is based on

Malecha’s term reification [38]. Recently a typed version of this system is also intro-

duced [4]. However, we are not aware of any work on using template metaprograms in

Coq to write new features for the editor.

Aside from this, there is a large body of work on proof automation, proof engineer-

ing and tactic languages in Coq. Coq’s original tactic language is Ltac [23], which is

separate from its Coq’s term language Gallina. However, alternatives to Ltac have been

developed, such as Mtac [60] and MetaCoq [59]. Especially Mtac, which is a tactic lan-

guage for Coq that facilitates custom proof search by providing a monadic interface,

has inspired further research in the area, including Idris’ elaborator reflection [17].

Chlipala’s Certified Programming with Dependent Types [15] has emerged as the canon-

ical introductory textbook for proof engineering; it explains the basics of tactic program-

ming and even delves into proof search and proof by reflection. Note that we use the

word reflection in the proof technical sense, as mentioned in the quote above.

6 It can be found here: https://github.com/Template-Coq/template-coq

https://github.com/Template-Coq/template-coq
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6.4. In Lean

Lean [22], which has a tactic metaprogramming system [25] similar to Idris’ elabo-

rator reflection, also allows running tactics in edit-time, and it does not require writing

any code for the editor mode frontend.7 The type of these editor actions can be seen in

Figure 6.1.

Figure 6.1. Definition of hole_command in Lean.

meta structure hole_command :=
(name : string)
(descr : string)
(action : list pexpr → tactic (list (string × string)))

They provide the following documentation for hole_command:8

“The front-end (e.g., Emacs, VS Code) can invoke commands for holes

{! ... !} in a declaration. A command is a tactic that takes zero or

more pre-terms in the hole, and returns a list of pair (s, descr)where

s is a substitution and ’descr’ is a short explanation for the substitution.

Each string s represents a different way to fill the hole. The frontend is

responsible for replacing the hole with the string/alternative selected

by the user. This infrastructure can be used to implement auto-fill

and/or refine commands. An action may return an empty list. This is

useful for actions that just return information such as: the type of an

expression, its normal form, etc.”

In comparison to the edit-time tactics mechanism presented in our work, Lean’s

system is very restrictive. It only allows editor action that run on holes, but our system

allows any kind of editor action as long as the user writes the necessary glue code in

the editor mode language. We already showed in Figure 3.17, what the glue code to

fill a hole would look like in Emacs Lisp. Another downside of Lean’s system is that
7 No Emacs Lisp if you are using Emacs.
8 From the source code of Lean 3.4.1.

https://github.com/leanprover/lean/blob/17fe3decaf8ae236f0d0ff51ac8fd7f6940acdee/library/init/meta/hole_command.lean
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editor actions can only have a single type, as opposed to our system, which allows any

kind of Elab action as long as the components of the a type all have an Editorable

implementation. Our system lets users write more expressive custom editor actions.

6.5. Others

We should also think about the prospects for building editor interactions into a

compiler from the start, so let’s take a look at the existing work on languages that are

designed with a priority on editor interactions.

Building editor interactions in a compiler from the start is not a new idea, both Idris

and Agda have done this already. They did not, however, take metaprogrammable ed-

itor interactions into account, and that is what our work brings to Idris. We believe

a path through Racket, a language-oriented programming [27, 28] language would be

an interesting take on building a language around its editor interactions. DrRacket [29],

Racket’s IDE, makes writing editor interaction easy for the languages defined in Racket.

This not only eliminates a lot of boilerplate code, but it also allows using Racket itself

to define new editor actions. There are already dependently-typed languages defined

in Racket: one example is Cur9 [10], a proof assistant with powerful metaprogramming

tools. There is also Pudding10, a proof assistant in development that uses Racket for

specifications, proof automation, code extraction and also extensions to the proof assis-

tant itself. Another one is Pie11 [20], a minimal language used for educational purposes.

We believe there is potential for stronger editor interaction for these languages through

metaprogramming.

Another path that is worth exploring more is structure editors. In the proof assistant

world, The Alfa proof editor [31] has established a proof interface based on structure

editor manipulating proof trees. More recently and for a simpler type theory, the Hazel

project [47, 48] explored what a language designed around its editor would look like.

Specifically, they designed a structure editor and a type theory to deal with incomplete

9 It can be found here: http://github.com/wilbowma/cur
10 It can be found here: http://github.com/david-christiansen/pudding
11 It can be found here: http://github.com/the-little-typer/pie

http://github.com/wilbowma/cur
http://github.com/david-christiansen/pudding
http://github.com/the-little-typer/pie
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programs in this setting. They also coined the term “edit-time” to mean when the user

is writing a program in the editor, and suggested “edit-time tactics” as future work12,

by which they meant a separate language in which users can define editor actions, and

a library of predefined editor actions that the users can compose.

Another question we should answer is how feasible it is to implement delaboration

in such a way that the compiler could respond directly with surface-syntax terms that

fit in the current binding context. Currently there is no way in Idris to write an editor

action that returns a surface-syntax term.13 The way elaborator reflection is defined

in Idris forces us to deal with core language terms only, and for the rest we depend

on the built-in delaboration. There is also no reflected Idris type that represents the

surface syntax, since the surface syntax can change quite often, maintaining its Idris

representation would be difficult, not to mention with every change it would likely

break users’ code that depends on it. Therefore, adding an Idris representation of the

surface-syntax is not planned.

Apart from Idris, it is possible to design a language that lets the users define editor

actions that return surface-syntax terms. We see two possible ways to do this:

(1) Not having a core language and surface-syntax distinction. This is not ideal if

you have a large programming language, then the type-checking, evaluation,

etc. have to be extended every time we want to add a new syntax. Not to men-

tion that lacking features like implicit arguments is bad language ergonomics;

elaboration is needed to resolve the implicit arguments [50].

(2) Having a reflected type in your language that represents the surface-syntax

terms, exposing the delaboration mechanism in your metaprogramming mech-

anism, and allowing splicing surface-syntax terms into programs. We are not

aware of any work that does this.

12 We learned this from their slides and also personal communication with Cyrus Omar and Ravi Chugh.
13 The only way around returning surface-syntax directly from an editor action is to return a String that

consists of the code, but that is inelegant and we would like to avoid that.



CHAPTER 7

Conclusion

7.1. Future work

7.1.1. Proof simplification. The ability to run tactics as editor actions has a conse-

quence that we have not explored much in this thesis. Idris tactics generate proof terms

at compile time, but their compilation can take a long time for complex tactics1, not to

mention that the implementation of elaborator reflection in Idris has significant perfor-

mance issues, as shown by Ebner et al. [25]. Yet we still want to utilize complex tactics

to generate proofs or terms. Using edit-time tactics, one would run a tactic once from

the editor, generate the proof term and serialize and send that to the editor and put

it back in the file. If we think of the differences between the traditions of writing the

proof terms directly and writing tactics, the former more common in Agda and Idris

and the latter in Coq, this work will constitute a one way bridge between the two, by

making use of the elaborator reflection to create proof terms in the editor in a smarter

and quicker way.

The problem with that approach is that the generated proof terms can be (and often

are) gigantic and hideous, especially if generating a minimal proof term is not a priority

for the tactic we are using. If there was a generic mechanism to simplify and minimize

the generated proof terms, and even write them in a way that makes use of dependent

pattern matching, then this could be a more usable consequence of this work. Ideally,

we would want the artifact we are handing in to the reader of our proofs to look just

like what it would be if we had not used this system. We leave that for future work.

1 Similar problems arise in Coq as well. For example, theorems that use the famous omega tactic that decides
Presburger arithmetic [51] take a long time to compile, and it usually generates a huge proof term.
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However, even without proof simplification, edit-time tactics still could be a last resort

solution to long compile times for tactics.

7.1.2. Writing an editor action frontend in Idris. We explained in chapter 1 that

this thesis focuses on writing the backend of an editor action in Idris, and that we still

had to write some Emacs Lisp (if we are using Emacs). However, Idris supports many

different code generation targets [1] seamlessly.

For example, since compiling to JavaScript is built-in, we can use JavaScript code

generation to write the editor interaction frontend for Visual Studio Code and Atom.

There are also experimental projects on compiling Idris to Emacs Lisp2 and VimL

(Vimscript)3. These projects are not mature enough yet, but we believe they have the

potential to inspire different applications of metaprogramming, especially if the Idris

modes of these editors are written in Idris via their respective code generation targets.

7.2. Final words

In this thesis, we extended the capabilities of the editor interaction mode of Idris

by allowing users to define new editor actions in Idris itself. We did so through a

metaprogramming technique that was introduced to Idris recently by Christiansen and

Brady [17].

Editors communicate with the compiler via S-expressions, so we gave users the

power to dictate how a value of a given Idris type should exactly be communicated;

through the Editorable interface users are now able to define how a received S-

expression should be parsed by the compiler, and how the compiler should send the

result as an S-expression. To achieve this, we reflected the SExp type to Idris, and ex-

tended elaborator reflection by adding new Elab primitives, with which we defined the

Editorable implementations for Idris types representing the Haskell representation of

Idris core language terms.

2 Steven Shaw’s work on compiling Idris to Emacs Lisp: http://github.com/steshaw/idris-elisp
3 Oskar Wickström and Soham Chowdhury’s work on compiling Idris to VimL: https://github.com/
owickstrom/idris-vimscript

http://github.com/steshaw/idris-elisp
https://github.com/owickstrom/idris-vimscript
https://github.com/owickstrom/idris-vimscript
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Using this feature, we showed a simple toy example, and then the addClause exam-

ple that can replace an existing built-in editor action, and Hezarfen, which is meant to

be a better proof search mechanism than the built-in one. We believe there is poten-

tial to replace even more of the built-in editor actions with edit-time tactics, such as

case-splitting and lifting a hole into a lemma. We can also add new general edit-time

tactics, such as renaming a binder, renaming a function within a file, pruning unused

arguments in a function, etc.

We also believe that as more decision procedures are coded up in Idris, edit-time

tactics can become a more popular feature. Especially library and DSL authors can ship

custom editor actions for their package, which would allow library users to write code

more easily with that library or DSL.

Hopefully our work will bring dependently-typed languages one step closer to the

state-of-the-art IDEs, and even give them an edge by allowing the reuse of the existing

metaprogramming mechanisms and tactic engineering efforts to write editor actions.
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