
LATEX TikZposter

Thinking Outside the �:
Verified Compilation of ML5 to JavaScript

Joomy Korkut
Advisor: Daniel R. Licata

Wesleyan University

Thinking Outside the �:
Verified Compilation of ML5 to JavaScript

Joomy Korkut
Advisor: Daniel R. Licata

Wesleyan University

Abstract

Curry-Howard correspondence describes a language that corre-

sponds to propositional logic. Since modal logic is an extension of

propositional logic, then what language corresponds to modal logic?

If there is one, then what is it good for? Murphy’s dissertation[1]

argues that a programming language designed based on modal type

systems can provide elegant abstractions to organize local resources

on different computers. In this thesis, I limit his argument to sim-

ple web programming and claim that a modal logic based language

provides a way to write readable code and correct web applications.

To do this, I defined a minimal language called ML5 in the Agda

proof assistant and then implemented a compiler to JavaScript for

it and proved its static correctness. The compiler is a series of

type directed translations through fully formalized languages, the

last one of which is a very limited subset of JavaScript. As op-

posed to Murphy’s compiler, this one compiles to JavaScript both

on the front end and back end through Node.js. Currently the last

step of conversion to JavaScript is not entirely complete. We have

not specified the conversion rules for the modal types, and network

communication only has a partially working proof-of-concept.

Background

Modal logic is a broad field that includes various kinds of logic that deal with
relational structures that have different perspectives of truth. We call these
perspectives of truth, “possible worlds”. Each world holds a possibly different set
of truths. Now we do not have the “A true” judgment, we specify the world and
say “A true at world w”. Our notation for that is A<w>.
The intuitionistic modal logic IS5∪ allows data transition from any world to an-
other. Traditionally modal logic has the � connective, which means a proposition
is correct for all world, and the ♦ connective, which means a proposition is correct
for some world. We replace them with the hybrid connectives at, ∀ and ∃, such
that �P = ∀ω.P at ω and ♦P = ∃ω.P at ω.
We then define the language Lambda 5 based on the proof terms of IS5∪, and
we include a notion of mobility that oversees what can be transferred between
worlds. The relationship between modal logic rules and proof terms in Lambda
5 should resemble how propositional logic and simply typed lambda calculus are
related in Curry-Howard correspondence, i.e. modal propositions will be types in
Lambda 5, and proof trees will be Lambda 5 expressions.

Type-Directed Translation

Our compiler has 5 conversion steps before JavaScript:

(1)ML5: an Agda formalization of Lambda 5

(2)Continuation-passing style: Considering that most ac-

tions in JavaScript are run through callbacks, this process is

necessary to move us closer to JavaScript, our final target lan-

guage.

(3)Closure conversion: We eventually want to hoist all lambdas

in a program to the top, so that we can call them by their names

during network communication. However, this is not possible

because these functions contain bound variables from previous

definitions. That is why we create closures to get rid of these

bound variables.

(4)Lambda lifting: Now that functions do not have any other

bound variables other than the argument of the function they

are in, we can hoist the functions.

(5)Monomorphic: Before conversion to JavaScript, we have to

monomorphize valid values into values in specific worlds.

Formalization of JavaScript

To prevent runtime errors in the code we generate, we will formal-

ize a subset of JavaScript that enforces certain type and context

restrictions. We are defining three syntactic categories for our for-

malization: statements, function statements and expressions.

Stm Γ < w > should read “the statement under the context Γ in

the world w”.

FnStm Γ ⇓ γ mσ < w > should read “the function statement un-

der the context Γ that extends the context with γ and has returned

the function with type mσ, in the world w”. FnStm can only be

used in lambda terms.

Γ ` τ < w > should read “the expression under the context Γ, of

the type τ, in the world w”.

Conversion to JavaScript

We are defining functions to convert continuation expressions and

expressions to JavaScript expressions and function statements.

convertCont : ∀ {Γ Δ Φ}
→ {s : only client (convertCtx Γ) ⊆ Δ}
→ {s’ : only server (convertCtx Γ) ⊆ Φ}
→ (w : World)

→ Γ `m ?< w >

→ Σ (λ δ→ FnStm Δ ⇓ δ nothing < client >)

× Σ (λ φ→ FnStm Φ ⇓ φ nothing < server >)

convertValue : ∀ {Γ Δ Φ τ w}
→ {s : only client (convertCtx Γ) ⊆ Δ}
→ {s’ : only server (convertCtx Γ) ⊆ Φ}
→ Γ `m ↓ τ < w >

→ (only w (convertCtx Γ)) `j (convertType {w} τ) < w >

× Σ (λ δ→ FnStm Δ ⇓ δ nothing < client >)

× Σ (λ φ→ FnStm Φ ⇓ φ nothing < server >)

After we get a FnStm, we will put it in an anonymous function and

call that immediately, which keeps everything we defined in the

local context and encapsulates our program. At the end, we can

have a huge function composition that serves as a compiler pipeline

from ML5 to JavaScript. Its definition is as follows:

compileToJS : [] `5 ‘Unit < client >→ String × String
compileToJS = (clientWrapper *** serverWrapper)
◦ (stmSource *** stmSource)
◦ LiftedMonomorphicToJS.entryPoint
◦ LiftedMonomorphize.entryPoint
◦ LambdaLifting.entryPoint
◦ CPStoClosure.convertCont
◦ ML5toCPS.convertExpr (λ v→ CPS.Terms.‘halt)

References

[1] Tom Murphy VII. Modal types for mobile code. PhD thesis, Carnegie Mellon
University, 2008.

